Redis集群模式原理

avatar 2021年4月17日18:19:59 评论 913 次浏览

1. Redis集群方案

Redis Cluster 集群模式通常具有 高可用、可扩展性、分布式、容错 等特性。Redis 分布式方案一般有两种:

1.1 客户端分区方案

客户端 就已经决定数据会被 存储 到哪个 redis 节点或者从哪个 redis 节点 读取数据。其主要思想是采用 哈希算法 将 Redis 数据的 key 进行散列,通过 hash 函数,特定的 key会 映射 到特定的 Redis 节点上。

客户端分区方案 的代表为 Redis Sharding,Redis Sharding 是 Redis Cluster 出来之前,业界普遍使用的 Redis 多实例集群 方法。Java 的 Redis 客户端驱动库 Jedis,支持 Redis Sharding 功能,即 ShardedJedis 以及 结合缓存池 的 ShardedJedisPool。

优点
不使用 第三方中间件,分区逻辑 可控,配置简单,节点之间无关联,容易 线性扩展,灵活性强。

缺点
客户端 无法 动态增删 服务节点,客户端需要自行维护 分发逻辑,客户端之间 无连接共享,会造成 连接浪费。

1.2. 代理分区方案

客户端 发送请求到一个 代理组件,代理 解析 客户端 的数据,并将请求转发至正确的节点,最后将结果回复给客户端。

优点:简化 客户端 的分布式逻辑,客户端 透明接入,切换成本低,代理的 转发 和 存储 分离。
缺点:多了一层 代理层,加重了 架构部署复杂度 和 性能损耗。

代理分区 主流实现的有方案有 Twemproxy 和 Codis。

1.2.1. Twemproxy

Twemproxy 也叫 nutcraker,是 twitter 开源的一个 redis 和 memcache 的 中间代理服务器 程序。Twemproxy 作为 代理,可接受来自多个程序的访问,按照 路由规则,转发给后台的各个 Redis 服务器,再原路返回。Twemproxy 存在 单点故障 问题,需要结合 Lvs 和 Keepalived 做 高可用方案。

优点:应用范围广,稳定性较高,中间代理层 高可用。
缺点:无法平滑地 水平扩容/缩容,无 可视化管理界面,运维不友好,出现故障,不能 自动转移。

1.2.2. Codis

Codis 是一个 分布式 Redis 解决方案,对于上层应用来说,连接 Codis-Proxy 和直接连接 原生的 Redis-Server 没有的区别。Codis 底层会 处理请求的转发,不停机的进行 数据迁移 等工作。Codis 采用了无状态的 代理层,对于 客户端 来说,一切都是透明的。

优点:实现了上层 Proxy 和底层 Redis 的 高可用,数据分片 和 自动平衡,提供 命令行接口 和 RESTful API,提供 监控 和 管理 界面,可以动态 添加 和 删除 Redis 节点。
缺点:部署架构 和 配置 复杂,不支持 跨机房 和 多租户,不支持 鉴权管理。

1.3. 查询路由方案

客户端随机地 请求任意一个 Redis 实例,然后由 Redis 将请求 转发 给 正确 的 Redis 节点。Redis Cluster 实现了一种 混合形式 的 查询路由,但并不是 直接 将请求从一个 Redis 节点 转发 到另一个 Redis 节点,而是在 客户端 的帮助下直接 重定向( redirected)到正确的 Redis 节点。

优点:无中心节点,数据按照 槽 存储分布在多个 Redis 实例上,可以平滑的进行节点 扩容/缩容,支持 高可用 和 自动故障转移,运维成本低。
缺点:严重依赖 Redis-trib 工具,缺乏 监控管理,需要依赖 Smart Client (维护连接,缓存路由表,MultiOp 和 Pipeline 支持)。Failover 节点的 检测过慢,不如 中心节点 ZooKeeper 及时。Gossip 消息具有一定开销。无法根据统计区分 冷热数据。

2. 数据分布

2.1. 数据分布理论

分布式数据库 首先要解决把 整个数据集 按照 分区规则 映射到 多个节点 的问题,即把 数据集 划分到 多个节点 上,每个节点负责 整体数据 的一个 子集。

数据分布通常有 哈希分区 和 顺序分区 两种方式,对比如下:

由于 Redis Cluster 采用 哈希分区规则,这里重点讨论 哈希分区。常见的 哈希分区 规则有几种,下面分别介绍:

2.1.1. 节点取余分区

使用特定的数据,如 Redis 的 键 或 用户 ID,再根据 节点数量 N 使用公式:hash(key)% N 计算出 哈希值,用来决定数据 映射 到哪一个节点上。

优点:这种方式的突出优点是 简单性,常用于 数据库 的 分库分表规则。一般采用 预分区 的方式,提前根据 数据量 规划好 分区数,比如划分为 512 或 1024 张表,保证可支撑未来一段时间的 数据容量,再根据 负载情况 将 表 迁移到其他 数据库 中。扩容时通常采用 翻倍扩容,避免 数据映射 全部被 打乱,导致 全量迁移 的情况。
缺点:当 节点数量变化时,如 扩容 或 收缩 节点,数据节点映射关系需要重新计算,会导致数据的 重新迁移。

2.1.2. 一致性哈希分区

一致性哈希 可以很好的解决 稳定性问题,可以将所有的 存储节点 排列在 收尾相接 的 Hash 环上,每个 key 在计算 Hash 后会 顺时针 找到 临接 的 存储节点 存放。而当有节点 加入 或 退出 时,仅影响该节点在 Hash 环上 顺时针相邻 的 后续节点。

优点:加入 和 删除 节点只影响 哈希环 中 顺时针方向 的 相邻的节点,对其他节点无影响。

缺点:加减节点 会造成 哈希环 中部分数据 无法命中。当使用 少量节点 时,节点变化 将大范围影响 哈希环 中 数据映射,不适合 少量数据节点 的分布式方案。普通 的 一致性哈希分区 在增减节点时需要 增加一倍 或 减去一半 节点才能保证 数据 和 负载的均衡。

注意:因为 一致性哈希分区 的这些缺点,一些分布式系统采用 虚拟槽 对 一致性哈希 进行改进,比如 Dynamo 系统。

2.1.3. 虚拟槽分区

虚拟槽分区 巧妙地使用了 哈希空间,使用 分散度良好 的 哈希函数 把所有数据 映射 到一个 固定范围 的 整数集合 中,整数定义为 槽(slot)。这个范围一般 远远大于 节点数,比如 Redis Cluster 槽范围是 0 ~ 16383。槽 是集群内 数据管理 和 迁移 的 基本单位。采用 大范围槽 的主要目的是为了方便 数据拆分 和 集群扩展。每个节点会负责 一定数量的槽,如图所示:

当前集群有 5 个节点,每个节点平均大约负责 3276 个 槽。由于采用 高质量 的 哈希算法,每个槽所映射的数据通常比较 均匀,将数据平均划分到 5 个节点进行 数据分区。Redis Cluster 就是采用 虚拟槽分区。

节点1: 包含 0 到 3276 号哈希槽。
节点2:包含 3277 到 6553 号哈希槽。
节点3:包含 6554 到 9830 号哈希槽。
节点4:包含 9831 到 13107 号哈希槽。
节点5:包含 13108 到 16383 号哈希槽。
这种结构很容易 添加 或者 删除 节点。如果 增加 一个节点 6,就需要从节点 1 ~ 5 获得部分 槽 分配到节点 6 上。如果想 移除 节点 1,需要将节点 1 中的 槽 移到节点 2 ~ 5 上,然后将 没有任何槽 的节点 1 从集群中 移除 即可。

由于从一个节点将 哈希槽 移动到另一个节点并不会 停止服务,所以无论 添加删除 或者 改变 某个节点的 哈希槽的数量 都不会造成 集群不可用 的状态.

2.2. Redis的数据分区

Redis Cluster 采用 虚拟槽分区,所有的 键 根据 哈希函数 映射到 0~16383 整数槽内,计算公式:slot = CRC16(key)& 16383。每个节点负责维护一部分槽以及槽所映射的 键值数据,如图所示:

2.2.1. Redis虚拟槽分区的特点

解耦 数据 和 节点 之间的关系,简化了节点 扩容 和 收缩 难度。
节点自身 维护槽的 映射关系,不需要 客户端 或者 代理服务 维护 槽分区元数据。
支持 节点、槽、键 之间的 映射查询,用于 数据路由、在线伸缩 等场景。

2.3. Redis集群的功能限制

Redis 集群相对 单机 在功能上存在一些限制,需要 开发人员 提前了解,在使用时做好规避。
key 批量操作 支持有限。类似 mset、mget 操作,目前只支持对具有相同 slot 值的 key 执行 批量操作。对于 映射为不同 slot 值的 key 由于执行 mget、mget 等操作可能存在于多个节点上,因此不被支持。
key 事务操作 支持有限。只支持 多 key 在 同一节点上 的 事务操作,当多个 key 分布在 不同 的节点上时 无法 使用事务功能。
key 作为 数据分区 的最小粒度。不能将一个 大的键值 对象如 hash、list 等映射到 不同的节点。
不支持 多数据库空间。单机 下的 Redis 可以支持 16 个数据库(db0 ~ db15),集群模式 下只能使用 一个 数据库空间,即 db0。
复制结构 只支持一层。从节点 只能复制 主节点,不支持 嵌套树状复制 结构。

注意:本文来自转摘,原文请参考:https://waterwang.blog.csdn.net/article/details/114365027

avatar

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: